Rapid fibroblast activation in mammalian cells induced by silicon nanowire arrays.

نویسندگان

  • Qing Ha
  • Gao Yang
  • Zhuo Ao
  • Dong Han
  • Fenglan Niu
  • Shutao Wang
چکیده

Activated tumor-associated fibroblasts (TAFs) with abundant fibroblast activation protein (FAP) expression attract tremendous attention in tumor progression studies. In this work, we report a rapid 24 h FAP activation method for fibroblasts using silicon nanowires (SiNWs) as culture substrates instead of growth factors or chemokines. In contrast with cells cultured on flat silicon which rarely express FAP, SiNW cultivated cells exhibit FAP levels similar to those found in cancerous tissue. We demonstrated that activated cells grown on SiNWs maintain their viability and proliferation in a time-dependent manner. Moreover, environmental scanning electron microscopy (ESEM) and focused ion beam and scanning electron microscopy (FIB-SEM) analysis clearly revealed that activated cells on SiNWs adapt to the structure of their substrates by filling inter-wire cavities via filopodia in contrast to cells cultured on flat silicon which spread freely. We further illustrated that the expression of FAP was rarely detected in activated cells after being re-cultured in Petri dishes, suggesting that the unique structure of SiNWs may have a certain influence on FAP activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy

Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...

متن کامل

Efficiency of Ovine Fibroblast or Cumulus Cells For Somatic Cell Nuclear Transfer in Sheep

Purpose: Despite remarkable progresses have been achieved in the field of somatic cell nuclear transfer (SCNT), there is little information regarding the effect of donor cell type on the efficiency mammalian somatic cell cloning in vitro. This study compared in vitro developmental competency of sheep enucleated oocytes reconstructed with either fibroblast or cumulus cells. Material and methods...

متن کامل

Optical Characterization of Silicon Nanowire Array

In this paper characterization on optical properties of silicon nanowire arrays has been made. Nanowire array has potential applications in solar cells. The effects of wire length and wavelength on the Transmission and reflection properties of nanowire arrays have been simulated. The analysis of simulated resulted has also been presented.

متن کامل

Salt-induced self-assembly of bacteria on nanowire arrays.

Studying bacteria-nanostructure interactions is crucial to gaining controllable interfacing of biotic and abiotic components in advanced biotechnologies. For bioelectrochemical systems, tunable cell-electrode architectures offer a path toward improving performance and discovering emergent properties. As such, Sporomusa ovata cells cultured on vertical silicon nanowire arrays formed filamentous ...

متن کامل

Quantifying the traction force of a single cell by aligned silicon nanowire array.

The physical behaviors of stationary cells, such as the morphology, motility, adhesion, anchorage, invasion and metastasis, are likely to be important for governing their biological characteristics. A change in the physical properties of mammalian cells could be an indication of disease. In this paper, we present a silicon-nanowire-array based technique for quantifying the mechanical behavior o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 14  شماره 

صفحات  -

تاریخ انتشار 2014